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OUTLINE

1. Introduction.

• Kinetics of coupled nucleation and growth.

• Advantages and limitations of the conventional
method of moments (MOM).

• Aerosol optical properties directly from the
moments (with Peter Huang).

2. Quadrature method of moments (QMOM).

• Illustrative calculations for diffusion controlled
growth.

3. Properties of aerosol size distributions having
    identical radial moments (with Seth Nemesure).



KINETICS OF COUPLED
NUCLEATION AND GROWTH

Method of moments (MOM):  Replace the infinite growth
sequence with the lower-order moment sequence:
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∞
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where f(r) is the (generally unknown) particle size distribution.



NUCLEATION AND GROWTH IN
COMPLEX FLOWS

MOMENT EVOLUTION EQUATIONS

Coupled set of general dynamic equations (GDE's) suitable for
describing aerosol formation in complex flowfields:
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nucleation growth from
monomer addition

where:
f1 is the monomer concentration,
R and S are source and sink rates, respectively, for monomer,
D is the eddy diffusion constant for turbulent mixing,
v is the local flow velocity,
v1 is the volume per monomer,
J(r) is the nucleation rate, and
φ(r)  is the particle growth law, φ(r) ≡ dr / dt .

• How to evaluate integrals over the unknown
distribution function???



LIMITATION OF THE CONVENTIONAL
METHOD OF MOMENTS

GROWTH LAW RESTRICTION

Necessary and sufficient condition for exact closure of the
moment evolution equations is a growth law of the form:

φ(r) ≡ dr
dt

= a + br

where a and b are independent of r.  Then integral evaluation
proceeds as follows:

k rk −1∫ φ(r) f (r)dr = ak rk −1∫ f (r)dr + bk rk∫ f (r)dr = akµ
k −1

+ bkµ
k

.

• The important case b = 0 represents free-molecular
growth.

• The QMOM replaces exact closure with an
approximate but much less restrictive closure
condition.



AN APPLICATION OF THE MOMENT METHOD
(R. McGraw and J. H. Saunders, Aerosol Sci. and Tech. 3, 367, 1984)
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The moments evolve according to a closed set of
differential equations having the same structure as rate
equations governing the evolution of reacting chemical
species.

Representation of nucleation and growth processes in models
is thus reduced mathematically to the simulation of a few
coupled reacting chemical species in the same flow.



NONLINEAR EFFECTS FROM
CONDENSATION FEEDBACK

(R. McGraw and J. H. Saunders, Aerosol Sci. and Tech. 3, 367, 1984)

Aerosol surface area density vs. number density in the stable
regime (low rate of monomer generation).

Similar plot in the unstable regime (high rate of monomer
generation leads to oscillatory behavior).



CALCULATION OF OPTICAL PROPERTIES
DIRECTLY FROM MOMENTS

(McGraw R., Huang P. I., and Schwartz S. E. Geophys. Res. Lett. 22, 2929, 1995)
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QUADRATURE METHOD OF MOMENTS

INTEGRAL APPROXIMATION VIA n-POINT GAUSSIAN QUADRATURE:
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• Essence of quadrature-based closure lies in the fact that
the abcissas (ri) and weights (wi) are completely
specified in terms of the lower-order moments of f(r).

•  The moments themselves may be written in this form:
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MOMENT INVERSION

An efficient algorithm has been developed (McGraw, Aerosol
Sci. and Tech., submitted, 1996) for rapid conversion of the
lower-order moment sequence to quadrature abcissas and
weights. For 3-point quadrature (requiring 6 moments):
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• Once the abcissas (ri) and weights (wi) have been
determined (from the moments), the unknown
distribution function integrals are obtained by the
summation indicated on the right hand side of the first
equation above.



CALCULATIONS FOR DIFFUSION
CONTROLLED GROWTH

• The diffusional growth law:

dr / dt =  k / r

results in moment evolution equations that are not in closed form. Only
approach until now has been to use assumed distributions
parameterized in terms of moments (e.g. Laguerre).
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Particle size distributions.  Diffusion controlled growth of water drops at T = 278 K and fixed
supersaturation of 101% (S = 1.01) .  Dotted curve, initial normalized K-M distribution with
mean particle radius of 5 mm.  Solid curve, exact evolved distribution after 20s.  Dashed-
dotted curve, Laguerre distribution parameterized by the moments 0 through 2 after
propagation to t=20s using the Laguerre closure method.



QMOM CALCULATIONS FOR
DIFFUSION CONTROLLED GROWTH

(McGraw R., Aerosol Sci. and Tech., submitted, 1996)
• Quadrature MOM permits calculation of the evolution of the moments
directly, without a priori assumptions about the form of the evolving
distribution.
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AEROSOL SIZE DISTRIBUTIONS HAVING
IDENTICAL RADIAL MOMENTS

(McGraw R., Nemesure S., and Schwartz S. E., Aerosol Sci. and Tech.,
to be submitted, 1996)

Two classes of size distributions having identical moments:
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Class distribution form is g(r) = f (r)[1+ wF(r)] where f (r) is the parent
distribution (e.g. lognormal or modified gamma) and F(r) is periodic
with properties such that the moments of the product f (r)F(r) vanish.
The parameter w (|w| ≤ 1 such that g(r) is nonnegative) is here set to 0
and ±1.



PHASE FUNCTIONS OF DIFFERENT AEROSOL SIZE
DISTRIBUTIONS HAVING IDENTICAL RADIAL MOMENTS
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Phase functions for the distributions w = 0 and w = ±1.  Percent
deviations from the parent distributions (w = 0) are also shown.



CONCLUSIONS

• Aerosol optical properties are well represented by
the moments of the radial size distribution or by
functions of the moments, e.g., parametrization of
radiation transfer in terms of the "effective radius"
re = µ3/µ2, and the phase function as shown here.

• The Conventional Method of Moments is well
suited for describing the evolution of the moments
of an aerosol size distribution, but only for highly
restrictive growth laws.

• The Quadrature Method of Moments extends the
method of moments to arbitrary growth laws and
should thus greatly extend the applicability
of the method, for example application in
atmospheric transport models.

• Different distributions having the identical sets of
moments seems to be of little practical concern.


